observed. These phenomena are explained by the dependence of the process on the nature of the cations being exchanged.

List of references.

1. Tawfik A. Saleh, Mujahid Mustaqeem, Mazen Khaled Water treatment technologies in removing heavy mtal ions from wastewater: A review. Environmental Nanotechnology, Monitoring & Management Volume 17, May 2022, 100617.

https://doi.org/10.1016/j.enmm.202.100617

- 2. Drosos, M., et al. (2021). "Phosphate and Ammonium Removal from Wastewaters Using Natural-Based Innuvative Bentonites." Molecules, 26(21), 6684.
- 3. Mazumdar, A., & Mazumdar, P. (2021). "Determination of total Iron Content in Water Using UV-Vis Spectroscopy." Journal of Environmental Chemical Analysis, 43(2), 112-118.
- 4. Li X., Wu D. Nanoclay Applications in Advanced Materials: Bentonite-Based Nanocomposites//Journal of Nanotechnology. 2025 №42(7), P.1312-1324.
- 5. Dinis, A., et al. (2020). "Application of Langmuir Adsorption Model for Removal of Heavy Metals." Environmental Science and Pollution Research. 185(8), 452-465.
- 6. B.Travalia and S.Forte, "New proposal in a biorefinery context: recovery of acetic and formic acids by adsorption onhydrotalcites," Journal of Chemical Engineering and Data, vol.65, no.9, pp. 4503-4511, 2020.

УДК 541.183:544.725 DOI: https://doi.org/10.56122/..v2i2%20(26).453

ПРИМЕНЕНИЕ МОДИФИЦИРОВАННЫХ АДСОРБЕНТОВ ДЛЯ ИЗВЛЕЧЕНИЯ ОРГАНИЧЕСКИХ ВЕЩЕСТВ

Усаров Озодбахт Бекназар ўғли – докторант Ташкентский химико-технологический институт Бобоев Одил Обиджон угли – докторант Ташкентский химико-технологический институт Нуруллаев Шавкат Пайзиевич - кандидат химических наук, профессор Ташкентский химико-технологический институт

ORCID: 0000-0002-4573-0264

Алихонова Зухрихон Саитдходжаевна - кандидат химических наук, доцент Ташкентский химико-технологический институт

ORCID: 0000-0001-8958-5604

Ишметов Расул Жуманиязович - доктор технических наук, профессор Ташкентский химико-технологический институт, Узбекистан *Университет Маъмуна, Ургенч, Узбекистан

ORCID: 0009-0002-8123-5591, e-mail: alixonovazuxraxon22@gmail.com

Аннотация

В данной работе изучена инновационный метод процесса адсорбции с применением модифицированных адсорбентов марки **АКС-30 и АКС-70** органических веществ (толуола, бензола, нитробензола и пиридина) из водных растворов. На основе полученных результатов рекомендован метод адсорбционной очистки промышленных сточных вод от органических загрязнений.

Ключевые слова: модификация, адсорбент, сорбция, органические вещества, энергия взаимодействия, пористые структуры, степень заполнения поры, изотерма адсорбции, уравнение Дубинина - Радушкевича.

APPLICATION OF MODIFIED ADSORBENTS TO EXTRACT ORGANIC SUBSTANCES

Usarov Azodbakht Beknazar Ugli - Doctoral student Boboev Odil Obidjon Ugli - PhD student Nurullaev Shavkat Payzievich - candidate of chemistry science, professor Tashkent chemical and technological institute

ORCID: 0000-0002-4573-0264

Alikhonova Zuhrikhan Saitkhodjaevna - candidate of chemistry science, associate professor

ORCID: 0000-0001-8958-5604

Ishmetov Rasul Jumaniyazovich - doctor of technical science, professor
Tashkent chemical and technological institute, Uzbekistan
*Mamun University, Urgench, Uzbekistan

ORCID: 0009-0002-8123-5591

Abstract

This paper examines an innovative adsorption method using modified AKS-30 and AKS-70 adsorbents for removing organic substances (toluene, benzene, nitrobenzene, and pyridine) from aqueous solutions. Based on the results obtained, a method for adsorption-based treatment of industrial wastewater from organic contaminants is recommended.

Key words: modification, adsorbent, sorption, organic substances, interaction energy, porous structures, degree of pore filling, adsorption isotherm, Dubinin-Radushkevich equation.

Введение

В качестве сорбционных материалов органических веществ, в промышленности применяются различные синтетические и природные минеральные пористые материалы, такие как силикагелы, оксиды и гидрооксиды алюминия и железа, многие глинистые минералы [1-3]. При адсорбции органических веществ из водных растворов развития пористость не является достаточно признаком активности адсорбента и поэтому условия пригодности пористых материалов для адсорбции органических веществ, растворенных в воде, требуют специального обсуждения.

Нами рассмотрен перспективность применения для очистки водных ресурсов от растворенных органических веществ модифицированных, относительно дешевых и стойких пористых материалов на основе Навбахорского бентонита и Ангренского каолина. Прежде всего следует обратить внимание на то, что все минеральные адсорбенты в значительной степени гидрофильны [4-5]. На поверхности этих сорбционных материалов находятся функциональные группы, образующие с молекулами воды прочные водородные связи [6]. Средняя энергия таких водородных связей составляет около 25-40 кДж/моль. Удерживание у поверхности модифицированных адсорбентов молекул органических веществ обусловлено взаимодействием преимущественно дисперсионными c поверхностными адсорбента. Величина энергии дисперсионного взаимодействия каждого из углеродных атомов молекулы. Прилегающих к атомам поверхности модифицированных адсорбентов, по различным оценкам составляет 2,5-4,0 кДж/моль.

Следовательно, для молекул, контактирующих с адсорбентом 6-10 углеродными атомами, эта энергия может быть приблеженно равен величину 25-40 кДж/моль.

Методика исследования

Все адсорбенты по характеру пористости подразделены на четыре типа: непористые, однородно-крупнопористые, однородно-мелкопористые и неодродно-пористые. Только непористые и однородно-крупнопористые адсорбенты могут быть достаточно полно охарактеризованы удельной поверхностью и только для них могут вычислены абсолютные изотермы адсорбции, где величина адсорбции отнесена к единице поверхности (например, выражена в ммоль/ M^2) [8]. Пористую структуру модифицированных адсорбентов для адсорбции растворённых органических веществ по значению заполнения степени объёма адсорбционного пространства микропор, определяя дифференциальной молярной работы (θ)адсорбции по уравнению:

$$\theta = \exp\left[-\left(\frac{A}{E}\right)^n\right] \tag{1}$$

где А - уменьшение энергии Гиббса (свободной энергии), который равен

$$\mathbf{A} = \mathbf{RTln} \frac{\mathbf{P_5}}{\mathbf{p}} \tag{2},$$

здесь, Е-параметр функции распределения, т.е. характеристическая энергия адсорбции, θ -степень заполнения адсорбционной фазы, равная a/a_{∞} ; n-целое число, преимущественно 1,2,3; p - равновесное давление; Ps - давление насыщенного пара; a - удельная адсорбция.

Независимо от значения n характеристические кривые имеют две общие точки: при θ =1 $\mathbf{a} = \mathbf{a}_{\infty}$ и при θ =0,370 E=A.

Характеристическую энергию Е легко найти из углового коэффициента уравнения

$$lga=lga_{\infty}-0.434\left(\frac{A}{E}\right)^n \tag{3}$$

При адсорбции из растворов уравнение Дубинина - Радушкевича (3) может быть использовано как в виде

$$lga = lga_{\infty} - 2,303 \frac{R^2 T^2}{E^2} \left(lg \frac{C_5}{c} \right)^2 \qquad (4),$$

где С-концентрация (моль/кг); С_s-концентрация насыщенного раствора, моль/м 2 ; Е-характеристическая энергия, R-универсальная газовая постоянная.

Результаты и их обсуждение

На рис-1 в координатах уравнения Дубинина-Радушкевича приведены изотермы адсорбции толуола, бензола, нитробензола и пиридина из водных растворов модифицированным адсорбентом АКС-30. Как видно из результатов опытов значения удельной адсорбции при температуре T=303 К для всех перечисленных выше органических веществ практически совпадают.

Общим свойством этих органических веществ является то, что между их молекулами в адсорбционном состоянии либо отсутствует взаимодействие, либо оно мало изменяется с заполнением адсорбционного объема. Отсутствие взаимодействия между адсорбированными молекулами является одним из основных условий применимости теории объемного заполнения пор для случая адсорбции паров. Общим свойством рассмотренных веществ является их слабая растворимость в воде, что указывает на относительно слабое взаимодействие их молекул с молекулами воды как в растворе, так и в адсорбированном состоянии.

Избирательная адсорбция из водного раствора возможно лишь в том случае, если разность энергии адсорбционного взаимодействия молекул растворенного вещества и энергии гидратации молекул.

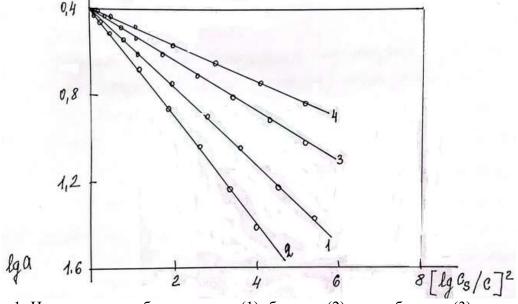


Рис.1. Изотермы адсорбции толуола (1), бензола (2), нитробензола (3) и пиридина (4) на модифицированных адсорбента АКС-30 из водных растворов.

При этом условием избирательной адсорбции растворенного органического вещества является неравенство значение энергии Гиббса (ΔG). Если в воде растворено вещество, являющееся органическим электролитом, то появление заряда на ионизированной молекуле, вызывая ориентацию вокруг него диполей воды, сильнейшим образом влияет на энергию взаимодействия. На рис.2. и 3. приведены изотермы адсорбции производных бензола из водных растворов в области рH, соответствующей степени ионизации $\alpha = 1$ при тех значениях рH, когда ионизации молекул полностью подавлена $\alpha = 0$. Из результатов опытов определена, что ионизация молекул действительно уменьшает процесса адсорбцию растворенных веществ во много раз. При этом следует обратить внимание на то, что адсорбция ионизированных молекул производных бензола на АКС-30 (а) и АКС-70 (б) не зависит от знака заряда ионов. Как органические анионы, так и органические катионы примененных адсорбентах хорошо адсорбируются.

Экспериментально выявлено различие в поведении органических и неорганических ионов. Это указывает на то, что адсорбция органических ионов на адсорбентах АКС-30 и АКС-70 осуществляется не засчет электростатического взаимодействия их зарядов с зарядами ионизированных функциональных групп, находящихся на поверхности адсорбентов, а является, как и адсорбция неионизированных молекул, следствием дисперсионного взаимодействия углеродных радикалов ионов с атомами адсорбентов.

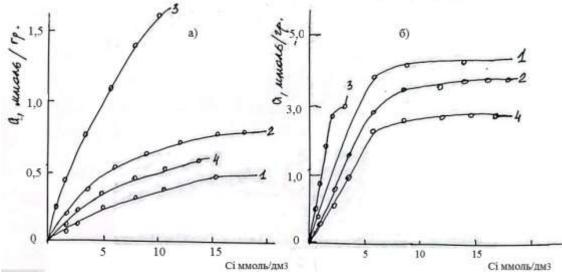
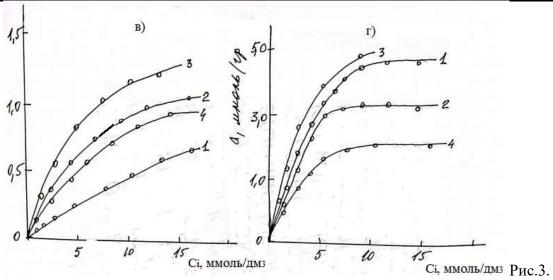



Рис.2. Изотермы адсорбции ионов при $\alpha = 1$ (а) и молекул при $\alpha = 0$ (б) производных бензола из водных растворов модифицированным адсорбентом АКС-30: 1-анилин; 2-п-хлоранилин; 3-п-нитроанилин; 4-сали-циловая кислота.

Изотермы адсорбции ионов при $\alpha = 1$ (а) и молекул при $\alpha = 0$ (б) производных бензола из водных растворов модифицированным адсорбентом АКС-70: 1-анилин; 2-n-хлоранилин; 3-n-нитроанилин; 4-салициловая кислота.

Заключение

Таким образом на основе проведенных исследований можно рекомендовать метод адсорбционной очистки промышленных сточных вод от органических загрязнений или очистки и дезодорации воды, забираемой из открытых водоемов для нужд технического и хозяйственно - питьевого водоснабжения с применением модифицированных адсорбентов АКС-30 и АКС-70. При адсорбции органических веществ из водных растворов энергия адсорбционного взаимодействия молекул органического вещества с углеродными атомами сорбентов значительно превышает энергию взаимодействия этих атомов с молекулами воды. Вследствие этого при объемном заполнении микропор адсорбированные молекулы воды оказываются в центральной части пространство поры, тогда как молекулы органического вещества удерживаются у периферии вблизи углеродных атомов.

Список литературы.

- 1. Tawfik A. Saleh, Mujahid Mustaqeem, Mazen Khaled Water treatment technologies in removing heavy mtal ions from wastewater: A review. Environmental Nanotechnology, Monitoring & Management Volume 17, May 2022, 100617.
- 2. https://doi.org/10.1016/j.enmm.202.100617
- 3. Drosos, M., et al. (2021). "Phosphate and Ammonium Removal from Wastewaters Using Natural-Based Innuvative Bentonites." Molecules, 26(21), 6684.
- 4. Mazumdar, A., & Mazumdar, P. (2021). "Determination of total Iron Content in Water Using UV-Vis Spectroscopy." Journal of Environmental Chemical Analysis, 43(2), 112-118.
- 5. Li X., Wu D. Nanoclay Applications in Advanced Materials: Bentonite-Based Nanocomposites//Journal of Nanotechnology. 2025 №42(7), P.1312-1324.
- 6. Dinis, A., et al. (2020). "Application of Langmuir Adsorption Model for Removal of Heavy Metals." Environmental Science and Pollution Research. 185(8), 452-465.
- 7. B.Travalia and S.Forte, "New proposal in a biorefinery context: recovery of acetic and formic acids by adsorption onhydrotalcites," Journal of Chemical Engineering and Data, vol.65, no.9, pp. 4503-4511, 2020.
- 8. А.Исмаилов, Ш.П.Нуруллаев, З.С.Алихонова, И.Рузматов. Waste from wood processing products for obtaining composite sorption materials. Spanish journal of innovation and integrity. JSSN: 2792-8268, Volume: 36, November, 2024, page 60-66.
- 9. Д.К.Хандамова, Ш.П.Нуруллаев, Р.Ж.Ишметов, М.Мамажонов, Т.Ибрагимов. Модификацияланган органобентонитларнинг темир ионларини адсорбциялаш қобилиятини баҳолаш: Ленгмюр модели самарадорлиги ва изотерма моделларининг таққосий таҳлили. Журнал-ЎзМУ Хабарлари, Т.,-2025, № 3/1, -314-318 бетлар.